Jira Bulk Move pitfalls

Say you have a large Jira project with components for things like Ul, Docs, API, Mobile, Auth, etc. Over time you realise that the Auth code is reusable. So
you turn it into a library, create a new AUTH Jira project, and now you want to Bulk Move all conponent =Aut h issues into your new AUTH project.

Sounds simple, right? Just create a new project and Bulk Move? How hard can it be?

® Bulk Move bug: Don't move sub-tasks with their parent
® Solution: move just the parents
® Missing versions and components

© Solution: the Jira Version/Component Cloner
® Bulk Move bug: CC field
® Bulk Move bug: 'Epic Name is required'
® Summary

Let's start. We assume you have created the destination project, using the 'Create with shared configuration' option to ensure all workflows and field
configurations are identical:

Import a project | ‘t5 Create with shared configuration | Create sample data m Cancel

Do a JQL search proj ect =SRC and conponent =Aut h , hit the Bulk Move and..
Wait, we've already made a mistake.

The bulk move, if it ever succeeds, processes issues sequentially. Our JQL has no order defined. It might return the last issue, SRC-10000 before the first,
SRC-1, in which case SRC-10000 might be mapped to DST-1. We want our destination issue keys in creation order, just like the source.

So amend your JQL to pr oj ect =SRCPRQJ and conponent =Auth ORDER BY i d ASC

Proceed with the bulk move:

Bulk Operation

@ Choose Issues Step 2 of 4: Choose Operation
Selected 4298 issues from 1
project(s) Choose the operation you wish to perform on the selected 4298 issue(s).
@ Choose Operation
O Edit Issues Edit field values of issues
Operation Details
i . @ Move Issues Move issues to new projects and issue types
Confirmation
O Transition Issues Transition issues through workFlow

Slow, but so far so good..

Bulk Operation

® Choose Issues Step 3 of 4: Select Projects and Issue Types @
Selected 4298 issues from 1
project(s) You have chosen to move 4298 issues from 1 project(s) with 11 issue type(s). You can either select a new project and issue

type for each of the existing 18 combinations below or choose to move all standard issues to a single project and issue type.
@ Choose Operation

Click the help icon to get more information on the Bulk Move process.
® Operation Details

Confirmation
Please note that 195 sub-task issues were removed from the selection and do not appear in the table below. You are
not allowed to bulk move sub-task issues together with their parent issue. In this case, you will only be asked to move
the sub-task if you move the parent issue to a new project.

Next Cancel

@ The change will affect 1497 issues with issue type(s) Bug in project(s) SrcProj.

Move To
SrcProj ’ DestProj (DestProj) ~
DOsug ~ DOsug v ®

Use the above project and issue type pair for all other combinations.
In Step 3 we get to choose the destination project for every issue type in our set of issues.

Bulk Move bug: Don't move sub-tasks with their parent

Things are normal (as above) until we get to sub-tasks, and it all goes wrong:

©® The change will affect 1 issues with issue type(s) Sub-task in project(s) SrcProj and parent issue(s) SRC-276968.

Move To

m SrcProj 7 srcProj (SRC) o

B sub-task * B sub-task v @
Select Parent Issue: SRC-276968 - Persona will bee... v

Begin typing to find recently viewed issues

Jira is demanding that we provide a 'Parent Issue'. But surely sub-tasks already have a parent? One that we're moving as part of the batch?

Well yes, but the Bulk Move wizard is dumb as rocks. It doesn't know that the sub-task parents are being moved too. It acts as if you are moving a sub-

task all on its own, which will thus need a new parent in its new project.

Solution: move just the parents

The solution is to do a JQL search for just the ‘parent’, non-subtask issues:
proj ect =SRCPRQJ and conponent =Auth and i ssuetype not in subtaskl ssueTypes()

Bulk move these, and the sub-tasks automatically come along for the ride.

Missing versions and components

Moving on, we get to 'Step 3"

Bulk Operation

@ Choose Issues Step 3 of 4: Update Fields for Target Project 'DestProj' - Issue Type 'Epic' G
Selected 4090 issues from 1
project(s) Update Fields for issues with current issue type(s) [[J Epic in project(s) SrcProj .

Retain Original Values: it is possible to retain original field values where the original value is valid within the target

® Choose Operation
destination. This can be achieved by checking the checkbox associated with the required field

@ Operation Details
« Checked: All valid original field values will be retained. The field will not be updated with the new value.

¢ -Bug + Unchecked: All field values will be overwritten with the new value.
@ -Epic
- story Next Cancel
- Inquiry Field Name Field Value Retain
- Milestone
Component/s Auth [Project: SrcProjl — | Unknown -
- Task.
_Incident Fix Version/s SRC-2020 [Project: SrcProj] — |Unkn0wn V|
Test auth-1.0 [Project: SrcProj] — |Unkn0wn V|
auth.20.12 [Project: SrcProj] — |Unkn0wn V|
- Improvement DestProj-FY23-Q3 [Project: SrcProj] — |Unkn0wn V|
Confirmation DestProj-FY23-Q4 [Project: SrcProj] — |Unkn0wn V|
DestProj-FY24-Q1 [Project: SrcProj] — |Unkn0wn V|
IntSol-FY24-Q1 [Project: SrcProj] — |Unkn0wn V|
DestProj-FY24-Q2 [Project: SrcProj] — | Unknown V|
DestProj-FY24-Q3 [Project: SrcProj] — | Unknown V|
DestProj-FY24-Q4 [Project: SrcProj] — | Unknown v|

If you want to preserve your issue versions and components, identically named versions/components must exist in the destination project. Otherwise the
Bulk Move wizard won't find anything to map them to.

So you'll have to recreate relevant versions and components in the destination project.

"But", you say, "I have 4000+ issues to move. How do | know which versions and components those issues actually use? Also, my source project has
<checks database> 1013 versions and 58 components. I'll go crazy recreating all those by hand!"

Let me spoil the surprise, and say that we're going to end up doing this with a hacky Python script. But humour me for a bit while we investigate what
Normal People would do.

Firstly, what doesn't work is simply creating a new destination Project using 'Create with shared configuration' with the source project:

Import a project | ‘Th Create with shared configuration | Create sample data m Cancel

Your destination project won't contain versions and components, or role mappings for that matter.

One way to properly copy a project, if you have ScriptRunner (as everyone should) is to use the ScriptRunner 'Copy Project' built-in script:

Applications Projects Issues

Browse
Console
Built-in Scripts
Jobs

Listeners
Fields
Behaviours
Workflows
Fragments
JOQL Functions
REST Endpoints
Resources
Mail Handler
Script Editor

Settings

Manage apps User management Latest upgrade report System ScriptRunner
&) ScriptRunner

L]
Browse Console Built-inScripts Jobs Listeners Fields Behaviours Workflows F

Copy project

This tool will create a new project, from the configuration of another project. This includes: Sch
Custom field configurations. Optionally: Issues, Versions, Components, Request types, Queues,

Documentation & Tips

Source project
srcProj o v

Project to copy
Select a service desk project to get more options

Target project key

DESTPROJ
Enter the key of the project to be created
Target project name

Destination Project

Enter the name of the project to be created

Copy versions

Do you want versions to be replicated in the target project?

Copy components

Do you want components to be replicated in the target project?

Copy issues
O

Do you want all the issues to be copied to the target project? You must also opt to copy Components and Versions.

Copy project-specific dashboard and Filters
O

Experimental. Copy dashboards and filters beginning with PKEY-. Will update JQL, and gadgets etc.
Copy rapid board

Select... v
Copy the configuration of an associated rapid board. The board will be set up for the new project.

Target board name

Mame to give the copied board

m Preview Cancel

Result

Project copied to DESTPROJ

I have 3 gripes with this, from very minor to major.
1) Minor - The copy is good but not perfect. Version Start Date is lost, as is component ‘archived' status
2) Medium - | didn't actually want all versions (1000+ in my case) copied! Not all will be relevant to moved issues

3) Major - After this | still have some (older) versions not being mapped by the Bulk Move:

Fix Version/s abc-2020 [Project: ABC] — [Unknown v|
abc-1.0 [Project: ABC] — [Unknown v|
abc.20.12 [Project: ABC] — [Unknown v|
abc.20.13 [Project: ABC] — [Unknown v|
abc.20.15 [Project: ABC] — [Unknown v|
abc.20.20 [Project: ABC] — [Unknown v|
UX3-1.14.0 [Project: ABC] — [Unknown v|

This is because these particular versions are archived, and to the Bulk Move wizard, archived versions are invisible.
So we don't actually want a perfect version cloner/copier. We want copied-but-unarchived versions, at least until the bulk move is done.
As a workaround, you could un-archive the destination project's versions by hand, do your Bulk Move and re-archive them afterwards.

But this is all getting tedious, so let's get back to that Hacky Script | promised earlier, which solves all our problems.

Solution: the Jira Version/Component Cloner
It lives at:
https://github.com/redradishtech/jira-versioncomponent-cloner

Simply, a python script that, given a source and destination project, will recreate the source project's components and versions in the destination project.
Follow the README to see how it works.

It has two features relevant to our Bulk Move needs:

® versions can be created un-archived, before later (after the bulk move) being archived as needed
® we can choose a subset of versions/components to copy, e.g. only those relevant to our issues being moved

Run first with unar chi ve=Tr ue as the README suggests, to create un-archived versions. Then after finishing the bulk move, run again with unar chi ve
=Fal se.

After running the script with unarchive=True, Bulk Move should detect the matching versions and components:

https://github.com/redradishtech/jira-versioncomponent-cloner

Bulk Operation

® Choose Issues Step 3 of 4: Update Fields for Target Project 'DestProj' - Issue Type 'Epic'
Selected 4090 issues from 1
project(s) Update fields for issues with current issue type(s) [fJ Epic in project(s) SrcProj .
® Choose Operation Retain Original Values: it is possible to retain original Field values where the original value is valid within the target

destination. This can be achieved by checking the checkbox associated with the required field

® Operation Details
® -Bug

« Checked: All valid original field values will be retained. The field will not be updated with the new value.
+ Unchecked: All field values will be overwritten with the new value.

® -Epic
- Story Next Cancel

-Inquiry Field Name

- Milestone
Component/s
- Task.

- Incident Fix Version/s

- Test

- Improvement

Confirmation

Bulk Move bug: CC field

On the same Step 3 page, you may see a CC field:

cc

Field Value

Auth [Project: SrcProjl — [Auth v

SRC-2020 [Project: SrcProj] — [SRc-2020 v|
auth-1.0 [Project: SrcProj] — [auth-1.0 v|
auth.20.12 [Project: SrcProj] — [auth.20.12 ~|
DestProj-FY23-Q3 [Project: SrcProj] — | DestProj-FY23-Q3 v|
DestProj-FY23-Q4 [Project: SrcProj] — | DestProj-Fy23-Q4 v|
DestProj-FY24-Q1 [Project: SrcProj] — |DesIProj—FY24-Q1 v|
IntSol-FY24-Q1 [Project: SrcProj] — [IntSol-FY24-Q1 v|
DestProj-FY24-Q2 [Project: SrcProj] — | DestProj-FY24-Q2 v|
DestProj-FY24-Q3 [Project: SrcProj] — | DestProj-FY24-Q3 v|
DestProj-FY24-Q4 [Project: SrcProj] — | DestProj-Fy24-Q4 v|

Start typing to get a list of possible matches.
People to be CC'd on the issue

The CC field appears if you have the Jira Watcher Field plugin installed:

User-installed apps

> (@ JIRA Component Watcher

~ (@ JIRA Watcher Field

Custom field type that allows watchers to be modified on the creation and update of issue.

Uninstall Disable

No screenshots available

Version:
Vendor:

App key:

6 of 6 modules enabled
2.8.5

(unknown)

com.burningcod
e jira.issue.custo
mfields.impl jira-
watcher-field

Retain

The Jira Watcher plugin lets you edit the watcher list on regular issue transition screens, as the CC field above. Normally this is what we want, but not
during a bulk move.

There is no good option here. If you leave CC blank, your issue watchers will all be lost. If you fill something in, your watchers will be overwritten.

Solution: abort the Bulk Move and disable the watcher field for the duration of the bulk move:

User-installed apps

> (@ JIRA Component Watcher

Custom field type that allows watchers to be modified on the creation and update of issue.

Uninstall Enable

Mo screenshots available) & 0 of 6 modules enabled
Version: 2.8.5

Vendor: (unknown)

App key: com.burningcod
e jira.issue.custo
mfields.impljira-
watcher-field

When you try again the CC fields should be gone.

Bulk Move bug: 'Epic Name is required’

The next problem may show up in Step 3 when you get to Epics. The bulk move wizard says Epic Name is required :

Bulk Operation

® Choose Issues Step 3 of 4: Update Fields for Target Project 'DestProj' - Issue Type 'Epic’ ®
Selected 4090 issues from 1
project(s) Update fields for issues with current issue type(s) [fJ Epic in project(s) SrcProj .

Retain Original Values: it is possible to retain original field values where the original value is valid within the target

® Choose Operation
destination. This can be achieved by checking the checkbox associated with the required field

@ Operation Details
« Checked: All valid original field values will be retained. The Field will not be updated with the new value.

® -Bu) . . .
9 + Unchecked: All field values will be overwritten with the new value.
® -Epic
- Story Next Cancel
- Inquiry Field Name Field Value Retain
- Milestone i
Component/s Auth [Project: SrcProj] — [Auth -
- Task.
_Incident Fix Version/s SRC-2020 [Project: SrcProj] — [SRc-2020 ~|
Test auth-1.0 [Project: SrcProj] — [auth-1.0 v|
-Tes
auth.20.12 [Project: SrcProj] — [auth.20.12 ~|
- Improvement DestProj-FY23-Q3 [Project: SrcProj] — | DestProj-FY23-Q3 V|
Confirmation DestProj-FY23-Q4 [Project: SrcProj] — | DestProj-Fy23-04 V|
DestProj-FY24-Q1 [Project: SrcProj] — | DestProj-Fy24-Q1 V|
IntSol-FY24-Q1 [Project: SrcProj] — [IntSol-Fy24-Q1 ~|
DestProj-FY24-Q2 [Project: SrcProj] — | DestProj-Fy24-Q2 V|
DestProj-FY24-Q3 [Project: SrcProj] — | DestProj-FY24-Q3 V|
DestProj-FY24-Q4 [Project: SrcProj] — | DestProj-Fy24-04 V|
Epic Name Epic Name is required.
Provide a short name to identify this epic.
Affects Version/s SRC-2020 [Project: SrcProjl — [SRC-2020 v

Version to which the fix should be targeted.

Send mail for this update

By selecting this option, an update notification will be sent For each issue affected by this bulk operation
Next Cancel
What is going on? Well, it's true that for Epics, Epic Name is a required field. But all our moved Epics already have an Epic Name! So why are we being
asked for one?

For me, it turned out that all my Epics did not have an Epic Name . Despite the relevant JQL (proj ect = SrcProj AND i ssuetype = Epic AND
"Epi ¢ Name" is enpty) returning nothing, JQL shows there are Epics without a Name:

SELECT project.pkey || '-' || jiraissue.issuenum AS issuekey,
cfv.stringval ue AS "Epi c Nane"
FROM pr oj ect
JO N jiraissue ON project.id=jiraissue. project
JO N i ssuetype ON issuetype.id=jiraissue.issuetype
LEFT JO N custonfiel dval ue cfv ON cfv.issue=jiraissue.id
LEFT JO N custonfield cf ON cf.id=cfv.custonfield
VWHERE pr oj ect . pkey=" SRC
AND i ssuet ype. pname=" Epi c'
AND cf. cf name=' Epi ¢ Nane'
AND cfv.stringvalue |'S NULL;

i ssuekey Epi ¢ Narme

SRC- 178105
SRC- 178099
SRC- 178123
SRC- 178143
SRC- 178101
SRC- 178140
SRC- 178098
SRC- 178083
SRC- 178139
SRC- 178142
SRC- 178095
SRC- 178132
SRC- 178147
SRC- 178133

(14 rows)

In fact these are trivial to create: start with an issue of any other type (a Story, for instance), click the 'Type' attribute and change it to Epic, and bam -
you've got yourself a nameless Epic.

For the bulk move, it appears that if you check the 'Retain’' checkbox, what you enter is only used for move issues with a blank Epic Name —i.e. it's not
going to overwrite Epic Names everywhere. So just set a fake Epic Name. Make it unique enough that you can later search for it in JQL or the database; e.
g. myepi cnane:

Epic Name Epic Name is required.
myepicname

Provide a short name ko identify this epic.

Also, check the "Retain" checkbox on the field. Otherwise all your other Epics will have their Epic Names overwritten.

I didn't either the first time! Here is some SQL to recover the lost Epic Name from the change history:

UPDATE custonfi el dval ue cfv
SET stringval ue=ol dstring
FROM
(SELECT cg. i ssuei d,
ci.oldstring
FROM changegroup cg
JO N changeitemci ON ci.groupid=cg.id
WHERE ci . newst ri ng=' nyepi cnane'
AND ci . field="Epic Nane') history
VWHERE hi story.issuei d=cfv.issue
AND custonfiel d=
(SELECT id
FROM custonfi el d
WHERE cf nane=' Epi ¢ Nane') RETURNI NG cfv.issue;

Summary

Things we've learned:

" Always append or der by | D ASC to the JQL of issues you're bulk moving, so the issue keys ascend in order of issue creation.

Do not try to bulk-move sub-tasks. Only bulk-move the parents. Append to your search JQL: i ssuetype not in subtaskl ssueTypes()
The destination project must have versions and components defined for incoming issues. The versions must be un-archived. Do this with code.
Disable the Jira Watcher Field plugin before you bulk move, and re-enable it after

Check the 'Retain’ box wherever possible, and especially on the Epic Name field if it appears.

Once you're done, don't forget to re-run Ji r aVer si onConponent Cl oner. py with unarchive=False. If you used the Jira Watcher Field plugin, re-enable
it after the move.

https://github.com/redradishtech/jira-versioncomponent-cloner

	Jira Bulk Move pitfalls

