
Migrating JIRA users to LDAP, preserving passwords
JIRA gives you the choice of storing user records internally, or delegating to an external 'User Directory' like Active Directory, LDAP or Atlassian Crowd.

Many smaller orgs start off with internal user records, but later want to migrate users to LDAP for ease of management, or to allow authentication with non-
Atlassian LDAP-aware systems.

Generating LDAP (LDIF) records from JIRA's cwd_* tables is not hard, but how about password hashes?

On this page we'll describe how to convert JIRA credential hashes:

{PKCS5S2}U48fu6LonjKCk0VmHPsgLrKf1/i1o/wxLXblOTa6P8eXvvJTU4iRb0fpRlO3xA0J

into a format understandable by OpenLDAP (with the module loaded): pw-pbkdf2

{PBKDF2}10000$cjsPF6FcSW9CDwmpREtZog$qWi06T.6SSapuTtDsFn/2DPacsc

This will let you migrate user records from Jira into LDAP without forcing everyone to reset their password.

Those familiar with JIRA's database will know about the table, where JIRA stores user data:cwd_user

redradish_jira=> select * from cwd_user where user_name='jturner';
[RECORD 1]
 id 10000
 directory_id 1
 user_name jturner
 lower_user_name jturner
 active 1
 created_date 2013-09-02 18:14:34.078712+10
 updated_date 2018-02-23 10:33:48.481+11
 first_name Jeff
 lower_first_name jeff
 last_name Turner
 lower_last_name turner
 display_name Jeff Turner
 lower_display_name jeff turner
 email_address jeff@redradishtech.com
 lower_email_address jeff@redradishtech.com
 credential {PKCS5S2}U48fu6LonjKCk0VmHPsgLrKf1/i1o/wxLXblOTa6P8eXvvJTU4iRb0fpRlO3xA0J
 deleted_externally
 external_id a330dede-18f8-4745-ac8d-d2ec2bcabedc

Atlassian's PKCS5S2 format

What exactly is that PKCS5S2 format JIRA uses for password hashes?

' ' refers to "PKCS #5: Password-Based Cryptography Specification Version 2.0", a document available in which provides PKCS5S2 RFC form
"recommendations for the implementation of password-based cryptography" . The recommendations include the use of the 'key derivation PBKDF2
function', of which HMAC-SHA-1 is an example.

The format is succinctly explained in the : Python library's docspasslib.hash.atlassian_pbkdf2_sha1

generate a random 16-byte salt
feeds the salt plus password into our PBKDF2 function, which applies a hash (HMAC-SHA1) 10,000 times, yielding a a 32-byte hash
concatenates salt and hash, and base64-encodes them

Incidentally you can generate such a hash using Python:

Argh! Something is buggy in hash conversion process. It works for some passwords but not for others ('hunter2' in particular).

I never ended up using this beyond testing, so don't have inclination to debug. I've left it online for all the incidental information provided.

https://github.com/hamano/openldap-pbkdf2
https://tools.ietf.org/html/rfc2898
https://passlib.readthedocs.io/en/stable/lib/passlib.hash.atlassian_pbkdf2_sha1.html#format-algorithm

$ sudo pip3 install passlib
$ python3 -c 'from passlib.hash import atlassian_pbkdf2_sha1; print(atlassian_pbkdf2_sha1.hash("hunter2"));'
{PKCS5S2}sFaqFaJUijGG0FqLUQrhPOEXrxB7jrXI7lzkPstbM3bhPq7x8rSS+Q3NtSduIgwt

If you have a commercial Jira license, you can also download the source at and take a look (unpack https://my.atlassian.com dependencySources
 and look at and)./atlassian-password-encoder-*-sources.jar DefaultPasswordEncoder PKCS5S2PasswordHashGenerator

So, easy enough. Let's unpack our sample password:

$ credential='{PKCS5S2}U48fu6LonjKCk0VmHPsgLrKf1/i1o/wxLXblOTa6P8eXvvJTU4iRb0fpRlO3xA0J'
$ credential="${credential#'{PKCS5S2}'}" # Chop off the
identifier
$ echo $credential
U48fu6LonjKCk0VmHPsgLrKf1/i1o/wxLXblOTa6P8eXvvJTU4iRb0fpRlO3xA0J
$ echo -n "$credential" | base64 -d | xxd
00000000: 538f 1fbb a2e8 9e32 8293 4566 1cfb 202e S......2..Ef.. .
00000010: b29f d7f8 b5a3 fc31 2d76 e539 36ba 3fc7 1-v.96.?.
00000020: 97be f253 5388 916f 47e9 4653 b7c4 0d09 ...SS..oG.FS....

The first 16 bytes is our salt, and the remainder is our hash:

$ salt="$(echo -n "$credential" | base64 -d | head -c16)"
$ hash="$(echo -n "$credential" | base64 -d | tail -c32)"

OpenLDAP's PBKDF2 Support

OpenLDAP with the help of a module. Here is how to generate a hash from the command-line:supports PBKDF2

slappasswd -o module-load=pw-pbkdf2.la -h {PBKDF2} -s hunter2
{PBKDF2}10000$wf6MXP0w8pxfQXKqDWCK1g$O3Vb3KDkFcmTqBCZU0w97XlELFc

The format is:

{PBKDF2}<Iteration>$<Adapted Base64 Salt>$<Adapted Base64 DK>

Although Atlassian's {PKCS5S2} and OpenLDAP's {BPKDF2} are really the same thing, the format is a bit different. Our job is to convert from Atlassian's
to OpenLDAP's.

This is not hard. Look at OpenLDAP's format again:

{PBKDF2}<Iteration>$<Adapted Base64 Salt>$<Adapted Base64 DK>

We know the iteration count (10000). We know the salt. We know the hash (derived key). We just need to reorder the elements.

Also, what is "adapted Base64"? Per the it is just a shortened base64 format which trims the padding (appearing as '=' at the end of base64-passlib docs
encoded strings), and uses '.' characters instead of '+'.We can define this as a bash function:

$ ab64encode() { python3 -c 'import sys; from passlib.utils.binary import *; print(ab64_encode(sys.stdin.buffer.
read()).decode("utf-8"))'; }
$ echo foo | base64 # regular base64
Zm9vCg==
$ echo foo | ab64encode # adapted base64
Zm9vCg

Now we have everything we need to write a conversion function:

https://my.atlassian.com
https://docs.atlassian.com/atlassian-security/3.2.3/apidocs/com/atlassian/security/password/DefaultPasswordEncoder.html
https://docs.atlassian.com/atlassian-password-encoder/3.2.4/atlassian-password-encoder/apidocs/com/atlassian/security/password/PKCS5S2PasswordHashGenerator.html
https://github.com/hamano/openldap-pbkdf2
https://passlib.readthedocs.io/en/stable/lib/passlib.utils.binary.html?highlight=ab64_encode#passlib.utils.binary.ab64_encode

function atlassian_to_pbkdf2()
{
 ab64encode() { python3 -c 'import sys; from passlib.utils.binary import *; print(ab64_encode(sys.stdin.buffer.
read()).decode("utf-8"))'; }
 local credential="$1"
 credential="${credential#'{PKCS5S2}'}"
 salt="$(echo -n "$credential" | base64 -d | head -c16 | ab64encode)"
 hash="$(echo -n "$credential" | base64 -d | tail -c32 | ab64encode)"
 printf "Salt: %s\n" "$salt"
 printf "Hash: %s\n" "$hash"
 printf "{PBKDF2}%d$%s$%s" 10000 "$salt" "$hash" | head -c64
 echo
}

or in Python if you prefer:

atlassian_to_pbkdf2.py

#!/usr/bin/env python3
Converts Atlassian's password format:
#
to OpenLDAP's format:
{PBKDF2}<Iteration>$<Adapted Base64 Salt>$<Adapted Base64 DK>

import sys
from passlib.utils.binary import b64decode
from passlib.utils.binary import ab64_encode

credential = sys.argv[1] # {PKCS5S2}U48fu6LonjKCk0VmHPsgLrKf1/i1o/wxLXblOTa6P8eXvvJTU4iRb0fpRlO3xA0J
#credential="{PKCS5S2}U48fu6LonjKCk0VmHPsgLrKf1/i1o/wxLXblOTa6P8eXvvJTU4iRb0fpRlO3xA0J"
credential = credential[9:] # U48fu6LonjKCk0VmHPsgLrKf1/i1o
/wxLXblOTa6P8eXvvJTU4iRb0fpRlO3xA0J
b64decode(credential)
salt = ab64_encode(b64decode(credential)[0:16]).decode('ascii')
hash = ab64_encode(b64decode(credential)[16:48]).decode('ascii')
final=f"{{PBKDF2}}10000${salt}${hash}"
print(final[:64])

A sample run:

$ atlassian_to_pbkdf2 {PKCS5S2}U48fu6LonjKCk0VmHPsgLrKf1/i1o/wxLXblOTa6P8eXvvJTU4iRb0fpRlO3xA0J
{PBKDF2}10000$U48fu6LonjKCk0VmHPsgLg$sp/X.LWj/DEtduU5Nro/x5e.8lN

Testing that this is correct is a bit tricky. Per the advice for OpenLDAP PBKDF2 page, the best way is probably to set this password in your /etc/ldap
:/slapd.conf

moduleload pw-pbkdf2.so
...
rootdn "cn=admin,dc=redradishtech,dc=com"
rootpw {PBKDF2}10000$U48fu6LonjKCk0VmHPsgLg$sp/X.LWj/DEtduU5Nro/x5e.8lN

What about {SHA} password hashes?

Up till 2013 JIRA (and Crowd) used the 'atlassian-sha1' scheme, which was actually unsalted sha512 (see

). I implemented sha512 support for - CWD-1137 Default to sha1 hashes rather than the infrequently implemented atlassian-sha1 CLOSED

OpenLDAP to support this (see).https://git.openldap.org/openldap/openldap/-/tree/master/contrib/slapd-modules/passwd/sha2

https://jira.atlassian.com/browse/CWD-1137
https://git.openldap.org/openldap/openldap/-/tree/master/contrib/slapd-modules/passwd/sha2

	Migrating JIRA users to LDAP, preserving passwords

