
JIRA REST-based Reporting Scripts
JIRA users occasionally need to generate statistical reports to track KPIs, answering questions such as:

How many hours were logged during the last sprint?
What is the per-user breakdown of hours logged in the last sprint?
How many Story Points were resolved in the last sprint?
How many issues were resolved before or after their due date?

The scripts in this section utilize JIRA's REST API to generate text-based reports, suitable for automatic generation and emailing.

All scripts are found in Bitbucket at . Some highlights are described below:https://bitbucket.org/redradish/jira-ruby-reports/

Overdue/on-time issue counts per priority

JIRA REST-based Reporting Scripts

Scripts (mostly written in Ruby) generating reports from a remote JIRA, via JIRA's REST API.

Report Synopsis
 Given a JIRA project name, a start date and and end date, find total counts of issues completed before, on or after the due date, per priority.

Generally the issues in question will be bug reports. This report answers questions like "how many bugs of each priority are we resolving each month?" or
"Are we resolving bugs by their due date"? By running the report for successive time periods, one can get a feel for the total backlog, and per-month
progress to clearing the backlog.Sample use: for Bugs in the UX project, show how many were resolved before, on or after their Due date, in the month of
July:

https://bitbucket.org/redradish/jira-ruby-reports/

jturner@jturner-desktop ~/src/bitbucket.org/redradish/jira-ruby-reports/overdue_by_priority $ bundle exec .
/jira_overdue_by_priority_report.rb --project=UX --issuetype=Bug --from=2015-07-01 --to=2015-07-30
--
| | Total | Unfinished | Finished Before Due | Finished On Due | Finished
After Due | Finished, no due date | Finished outside daterange |
| Major, without due date | 328 | 6 | 0 | 0 |
0 | 24 | 298 |
| Minor, without due date | 125 | 83 | 0 | 0 |
0 | 3 | 39 |
| Blocker, without due date | 9 | 0 | 0 | 0 |
0 | 0 | 9 |
| Critical, without due date | 14 | 0 | 0 | 0 |
0 | 0 | 14 |
| Minor, with due date | 1 | 1 | 0 | 0 |
0 | 0 | 0 |
| Major, with due date | 2 | 2 | 0 | 0 |
0 | 0 | 0 |
| Unplanned, with due date | 1 | 0 | 0 | 0 |
0 | 0 | 1 |
| Unplanned, without due date | 21 | 0 | 0 | 0 |
0 | 0 | 21 |
--
<table border=1>
<tr><th> </th><th>Total</th><th>Unfinished</th><th>Finished Before Due</th><th>Finished On Due<
/th><th>Finished After Due</th><th>Finished, no due date</th><th>Finished outside daterange</th></tr>
<tr><th>Major, without due date</th><td>328</td><td>6</td><td>0</td><td>0</td><td>0</td><td>24</td><td>298</td><
/tr>
<tr><th>Minor, without due date</th><td>125</td><td>83</td><td>0</td><td>0</td><td>0</td><td>3</td><td>39</td><
/tr>
<tr><th>Blocker, without due date</th><td>9</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>9</td><
/tr>
<tr><th>Critical, without due date</th><td>14</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>14</td><
/tr>
<tr><th>Minor, with due date</th><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>
<tr><th>Major, with due date</th><td>2</td><td>2</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>
<tr><th>Unplanned, with due date</th><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td></tr>
<tr><th>Unplanned, without due date</th><td>21</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>21<
/td></tr></table>

The script's output, when rendered:

 Total Unfinished Finished Before
Due

Finished On
Due

Finished After
Due

Finished, no due
date

Finished outside
daterange

Major, without due date 328 6 0 0 0 24 298

Minor, without due date 125 83 0 0 0 3 39

Blocker, without due date 9 0 0 0 0 0 9

Critical, without due date 14 0 0 0 0 0 14

Minor, with due date 1 1 0 0 0 0 0

Major, with due date 2 2 0 0 0 0 0

Unplanned, with due date 1 0 0 0 0 0 1

Unplanned, without due
date

21 0 0 0 0 0 21

Here we can see:

Total is the total issue count (for that row). In the example, at the time we ran the script there were Bugs with 'Major' priority and no due date.328
Unfinished is the total unresolved issue count. In the example, of the 328 Major unscheduled bugs, there were unresolved.6
The next 4 cols, and , show issues resolved within the given interval. In the example, Finished Before/On/After Due, Finished, no due date 24
of the 328 bugs were resolved in September.
The last column, , shows issues resolved outside the given interval. In the example, of the 328 bugs were Finished outside daterange 298
resolved outside September.

Implementation
The script achieving this is found in Bitbucket at .https://bitbucket.org/redradish/jira-ruby-reports/src/master/overdue_by_priority/

Implementation Walkthrough

In Ruby, using the gem.jira-ruby

First we set up a object, using HTTP Basic authentication;$client

require 'jira'
require 'parallel'

HOST='https://REDACTED.atlassian.net'
$options = {
 :site => HOST,
 :context_path => '',
 :username => 'myusername',
 :password => %q{REDACTED},
 :auth_type => :basic
}

$client = JIRA::Client.new($options)

Next, we fetch the issues we're interested in:

issues = $client.Issue.jql("project=UX and updated>='2015-10-01' AND updated<='2015-10-27'", max_results:1000)
{ |i| i.fetch; i }

Now for the interesting part. Issues with a due date will have a field, which we can parse wtih :resolutiondate strptime

rdate = issues.find { |i| i.resolutiondate }.resolutiondate
=> "2015-10-26T09:23:07.000-0700"
rdate = DateTime.strptime(rdate, '%Y-%m-%dT%H:%M:%S.%L%z')
=> #<DateTime: 2015-10-26T09:23:07-07:00 ((2457322j,58987s,0n),-25200s,2299161j)>
rdate = rdate.to_date # Discard time portion
=> #<Date: 2015-10-26 ((2457322j,0s,0n),+0s,2299161j)>

We will also have a , which we can parse similarly:duedate

ddate = issues.find { |i| i.duedate }.duedate
=> "2015-11-05"
Date.strptime(ddate, "%Y-%m-%d")
=> #<Date: 2015-11-05 ((2457332j,0s,0n),+0s,2299161j)>

and a , which is actually an object, so we'll just use the part of it:priority name

[14] pry(main)> ddate = issues.find { |i| i.priority }.priority.name
=> "Critical"

Now we need to:

group issues by priority
for each priority's group, group again by classification:

if there is no resolution date, classify as "Unfinished"
if there is a resolution date, but no due date, classify "Finished, no due date"
If the resolution date and due date match, classify as "On Due"
If the resolution date is earlier than due date, classify as "Before Due"
If the resolution date is after the due date, classify as "After Due"

The Ruby module's method does the group-into-buckets job nicely, giving us a hash-of-hashes data structure.Enumerable group_by

https://bitbucket.org/redradish/jira-ruby-reports/src/master/overdue_by_priority/

data = issues.group_by { |i|
 i.priority.name + ", " + (i.duedate ? "with" : "without") + " due date" }
 .inject({}) { |h, (priority, issues)|
 h[priority] = issues.group_by { |i|
 resdate = i.resolutiondate && DateTime.strptime(i.resolutiondate, '%Y-%m-%dT%H:%M:%S.%L%
z').to_date
 duedate = i.duedate && Date.strptime(i.duedate, "%Y-%m-%d")
 if !resdate then "Unfinished"
 elsif !duedate then "Finished, no due date"
 elsif resdate == duedate then "Finished On Due"
 elsif resdate < duedate then "Finished Before Due"
 else "Finished After Due"
 end
 }
 h[priority]["Total"] = issues
 h
 }

data.keys # Show our top-level groupings (this will be rows)
=> ["Critical, without due date", "Major, without due date", "Minor, without due date", "Major, with due date",
"Blocker, without due date"]
cols = data.collect { |(k,v)| v.keys }.flatten.uniq # Identify unique columns.
=> ["Unfinished", "Finished, no due date"]

Reporting

We now have our data in a nested-hash data structure, and want to output it in tabular format.

First, we iterate over rows and columns and count the issues, giving us a simple 2d structure:

cols = ["Total", "Unfinished", "Finished On Due", "Finished Before Due", "Finished After Due", "Finished, no
due date"]
result = [[nil] + cols] # First row is a list of columns, starting with a nil
Add rows, consisting of an array beginning with 'rowname', followed by the number of issues, or zero
result += data.collect { |(priority, issues_by_finishedstatus)|
 [priority] + cols.collect { |col|
 issues_by_finishedstatus[col] ? issues_by_finishedstatus[col].size : 0 }
 }
=> pp result
[[nil,
 "Total",
 "Unfinished",
 "Finished On Due",
 "Finished Before Due",
 "Finished After Due",
 "Finished, no due date"],
 ["Minor, without due date", 44, 36, 0, 0, 0, 8],
 ["Blocker, without due date", 5, 0, 0, 0, 0, 5],
 ["Critical, without due date", 4, 1, 0, 0, 0, 3],
 ["Major, without due date", 131, 46, 0, 0, 0, 85],
 ["Minor, with due date", 1, 1, 0, 0, 0, 0],
 ["Major, with due date", 2, 2, 0, 0, 0, 0],
 ["Blocker, with due date", 1, 1, 0, 0, 0, 0]]

Displaying our array-of-arrays properly indented can be done with:

puts "| " + result.collect { |r| r.collect.with_index { |c,i|
 colwidth = (i==0 ? 26 : result[0][i].size)
 "%-#{colwidth}s" % c }.join(" | ")
 }.join(" |\n| ") + " |"
=>
| | Total | Unfinished | Finished On Due | Finished Before Due | Finished After Due
| Finished, no due date |
| Minor, without due date | 44 | 36 | 0 | 0 | 0
| 8 |
| Blocker, without due date | 5 | 0 | 0 | 0 | 0
| 5 |
| Critical, without due date | 4 | 1 | 0 | 0 | 0
| 3 |
| Major, without due date | 131 | 46 | 0 | 0 | 0
| 85 |
| Minor, with due date | 1 | 1 | 0 | 0 | 0
| 0 |
| Major, with due date | 2 | 2 | 0 | 0 | 0
| 0 |
| Blocker, with due date | 1 | 1 | 0 | 0 | 0
| 0 |

The script in Bitbucket also emits HTML, which renders as:

 Total Unfinished Finished On Due Finished Before Due Finished After Due Finished, no due date

Minor, without due date 44 36 0 0 0 8

Blocker, without due date 5 0 0 0 0 5

Critical, without due date 4 1 0 0 0 3

Major, without due date 131 46 0 0 0 85

Minor, with due date 1 1 0 0 0 0

Major, with due date 2 2 0 0 0 0

Blocker, with due date 1 1 0 0 0 0

Time worked per user, per sprint

JIRA REST-based Reporting Scripts

Scripts (mostly written in Ruby) generating reports from a remote JIRA, via JIRA's REST API.

Report Synopsis
Given a sprint, print the total worklog hours logged by each user on the sprint's issues.
Given a sprint, report total worklog hours.
Given a sprint, report total Story Points completed.

Implementation
The scripts achieving these goals are found in Bitbucket at https://bitbucket.org/redradish/jira-ruby-reports/src/master/time_spent_per_sprint/?at=master.
Sample use:

https://bitbucket.org/redradish/jira-ruby-reports/src/master/time_spent_per_sprint/?at=master

jturner@jturner-desktop ~/src/bitbucket.org/redradish/jira-ruby-reports/time_spent_per_sprint $ bundle exec .
/time_per_user_per_sprint.rb "sprint=Quintara"
jsmith: 32h 16m
afernando: 29h 30m
jalison: 37h 12m
oporter: 44h 40m
dnewlands: 32h 30m
ballen: 0h 1m
bob: 12h 31m

jturner@jturner-desktop ~/src/bitbucket.org/redradish/jira-ruby-reports/time_spent_per_sprint $ bundle exec .
/sprint_total_time.rb
Total time spent: 224.000000
Total Story Points resolved: 61

Implementation Walkthrough
As usual, we first create a to query JIRA with:$client

require 'jira'
#require 'pry'
require 'parallel'
require_relative './vars'
$options = {
 :site => JIRA_URL,
 :context_path => '',
 :username => JIRA_USERNAME,
 :password => JIRA_PASSWORD,
 :auth_type => :basic
}
query=ARGV[0]
if !query then
 query="sprint=251"
 $stderr.puts "No JQL argument passed; using default: #{query}"
end
$client = JIRA::Client.new($options)

and fetch relevant issues with JQL:

$client.Issue.jql("sprint=251", max_results:1000)

We are interested in the worklogs, however, and worklogs are not fetched by default by the Ruby library. We need to call on each issue to fetch .fetch
the field.worklogs

Fetching details of hundreds of issues is going to take time, so we use Ruby's Gem to parallelize this fetching somewhat:parallel

issues = Parallel.map($client.Issue.jql("sprint=251", max_results:1000), :in_processes=>10) { |i| i.fetch; i }

The rest of the script builds on this, building up a hash mapping authornames to the cumulative total of their worklogs, and then printing the hash:

issues = Parallel.map($client.Issue.jql("sprint=251", max_results:1000), :in_processes=>10) { |i| i.fetch; i }
 .each_with_object({}) { |i,hash|
 i.worklogs.each { |w|
 hash[w.author.name] ||= 0
 hash[w.author.name] += w.timeSpentSeconds
 } }
 .each { |user, secs|
 puts "#{user}: #{secs / 60 / 60}h #{secs / 60 % 60}m"
 }

The script is even simpler:sprint_total_time.rb

issues = Parallel.map($client.Issue.jql("sprint=251", max_results:1000), :in_processes=>10) { |i| i.fetch; i }
puts "Total time spent:\t%f\n" % (issues.collect { |i| i.timespent or 0 }.inject(:+) / 60 / 60)
puts "Total Story Points resolved:\t%d\n" % issues.collect { |i| i.customfield_10105 or 0 }.inject(:+)

	JIRA REST-based Reporting Scripts

