
1.
2.
3.

Missing token errors when attaching files or screenshots to
Jira

Have you ever tried to attach a file or image to a Jira issue, and got the error Jira could not attach the file as there was a missing token. Please try
 ? This commonly happens when:attaching the file again.

You are viewing a Jira issue
You leave your computer for over 5 hours in another tab you log out and back in to Jira.-- or--
You return to the issue, and try to attach a file or image to the issue.without refreshing the page

It also happens if you click the 'Create' button to create a new issue, and on the 'Attachment' field try to upload an attachment.

Background: CSRF attacks

The 'missing token' in question is a CSRF token used to prevent CSRF (cross site request forgery) attacks.

An example of a CSRF attack would be as follows. An attacker creates a HTML page at containing:https://hax0rs.com

<a href="https://jira.yourcompany.com/secure/admin/user/AddUser.jspa?email=evil%40hax0rs.
com&fullname=Mr+Hax0r&username=hacker&password=hacker123&selectedApplications=jira-software&Create=Create+user"
>Click me!

If you can trick a Jira administrator into visiting that site and clicking that link, a new account is created in Jira.hacker

 Why did Jira, upon receiving that HTTP request, trust the sender? Because your browser identified the request as "coming from you" by AddUser.jspa
including a identifying JSESSIONID cookie, which is scoped to .jira.yourcompany.com

Jira's CSRF defenses

The CSRF tokenatl_token

Jira's main defense against CSRF is to generate a random bit of text (the 'CSRF token') just for you when you log in, and embed it in every HTML form
that, if submitted, would changes server state (like adding users). The field is called atl_token:

This is a tour of how Jira does CSRF (cross-site request forgery), written for my own benefit while investigating the problems eventually mostly

logged as . - JRASERVER-73880 Attachments intermittently failing with 'missing token' error GATHERING IMPACT

SameSite=Lax

Until 2020, you could even embed the malicious URL in a tag, and not even need the user to click That is no longer possible since Same
 , 'Lax' meaning the cookie is sent when a link is clicked, but not for non-interactive URLs like in Site=Lax became the default JSESSIONID

.

https://hax0rs.com
https://jira.atlassian.com/browse/JRASERVER-73880
https://developers.google.com/search/blog/2020/01/get-ready-for-new-samesitenone-secure

1.
2.

When the user submits a form in Jira (on the 'Add User' admin page, for example), this parameter is submitted in the POST body. Jira checks atl_token
that the value is correct before performing the operation. The CSRF token value is a secret known only to Jira and your browser, and atl_token
changes after every login or session expiry (5h of inactivity). An attacker won't know the correct parameter to include in their forged URL.atl_token

This is known in the literature as the (OWASP)synchronizer token pattern

Origin/Referer checking

In addition to the mechanism, Jira also implements the 'Defence In Depth Techniques' on the OWASP page. Specifically, the and atl_token Origin Re
 request headers are checked for REST resources (but perhaps not yet for requests - see ferer .jspa

). and - JRASERVER-63915 Implement the origin csrf/xsrf checks that atlassian-rest has for JIRA actions. GATHERING INTEREST Origin Referer

tell Jira where the request originated – in our example. This is implemented in .https://hax0rs.com XsrfResourceFilter.java

Jira's CSRF Implementation Details

Back to those parameters.atl_token

We know that the token is initially generated by Jira when you log in, and is embedded in the returned HTML:

But where does Jira store its copy of the parameter? In two places actually:

the user session
in the user's browser as a cookie.

The session attributeatlassian.xsrf.token

While you are actively using Jira, Jira maintains a 'session' for you. A session is just a handful of key:value pairs in memory, grouped by 'session id', which
is associated with your browser requests with the JSESSIONID cookie your browser sends.

If you are a Jira administator you can see your session's attributes by dropping into your directory, and sessionattributes.jsp atlassian-jira/secure/
hitting the URL:/secure/sessionattribute.jsp

Only some Jira operations get token-based CSRF protection. It seems a bit haphazard, e.g. creating a Jira issue is CSRF protected, but adding
a comment isn't. Specifically, CSRF protection is applied to:

*.jspa Webwork actions like CreateIssueDetails.jspa, whose method has a annotation. For the execute() @requiresXsrfCheck
implementation, see JiraActionFactory.java which invokes .DefaultXsrfInvocationChecker.java
POST, DELETE AND put operations on REST resources, like , submitted via HTTP forms. See Atlassian REST API design guidelines
for the rules here. This is implemented in XsrfResourceFilter, which also eventually leads to DefaultXsrfInvocationChecker.

 java

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#synchronizer-token-pattern
https://jira.atlassian.com/browse/JRASERVER-63915
https://hax0rs.com
https://www.redradishtech.com/download/attachments/56492327/sessionattributes.jsp?version=1&modificationDate=1654052550028&api=v2
https://developer.atlassian.com/server/framework/atlassian-sdk/atlassian-rest-api-design-guidelines-version-1/#security

There in the session, you see where Jira is storing your CSRF token: in the attribute (Jira uses 'XSRF' as a synonym for CSRF).atlassian.xsrf.token

There are a few more wrinkles, but that is the essence of Jira's CSRF protection: all state-modifying HTTP requests must have an field, whose atl_token
value must match the session parameter. atlassian.xsrf.token

The cookieatlassian.xsrf.token

If you examine the cookies your browser associates with Jira, you'll see an cookie:atlassian.xsrf.token

This is sent along with every HTTP request.

It would therefore be easy to think that . Isn't the server just comparing the this atlassian.xsrf.token cookie is the thing in the request that needs validating atl
 request cookie with the session attribute is knows is correct, and if they match, passing the CSRF check?assian.xsrf.token atlassian.xsrf.token

No! Remember that the cookie is sent by the browser, and will always be present in malicious non-malicious requests. Its value atlassian.xsrf.token and
will always be correct, because cookies aren't under the attacker's control. The presence of a correct cookie tells Jira nothing about atlassian.xsrf.token
whether the request has a malicious origin. It is the form parameter which needs validating, not the request cookie.atl_token atlassian.xsrf.token

In fact, when the server receives a request, it could compare the form parameter with either the request cookie, or the atl_token atlassian.xsrf.token at
 session attribute. In fact Jira does both (in).lassian.xsrf.token XsrfTokenStrategy.java

Why does Jira even set the cookie? No idea. The general question of "why send the CSRF token as a cookie" atlassian.xsrf.token is asked and
. I'm not sure if any of those advantages actually apply to Jira. Certainly Jira does not populate the form field from answered on Stackoverflow atl_token

the cookie, as it might do. and does not implement the "double submit cookie" pattern where the cookie value is compared with the form value, removing
the need for server-side state. Perhaps it is handy to have AJAX Javascript-initiated requests automatically CSRF-protected.

When sessions expire..

One nice thing Jira have done with the incoming cookie it is re-initialize the session parameter from the could atlassian.xsrf.token atlassian.xsrf.token
cookie if the session has expired. Then if your session expired overnight, and you had a Jira form half-filled in, the submit (next morning) would work, as
the session would be seeded from the cookie. Currently that doesn't happen: if the session has expired, atlassian.xsrf.token atlassian.xsrf.token XsrfT

 (very early in the filter chain) just generates a new session attribute, which is then okenAdditionRequestFilter.java atlassian.xsrf.token
compared to the field, fails to match, and you get a 'missing token' error to brighten your Monday morning:atl_token

https://stackoverflow.com/questions/20504846/why-is-it-common-to-put-csrf-prevention-tokens-in-cookies
https://stackoverflow.com/questions/20504846/why-is-it-common-to-put-csrf-prevention-tokens-in-cookies

..to Be Continued

Apologies to anyone reading, but there is no conclusion yet. The fix suggested above (copy the token from cookie to session) could be implemented as a
custom servlet filter, . If I ever do so I will update this post. even implemented as a plugin

https://developer.atlassian.com/server/jira/platform/servlet-filter/

	Missing token errors when attaching files or screenshots to Jira

